CVE | Published | Severity | Details | Exploitability | Impact | Vector |
CVE‑2023‑41105 | 2023‑08‑23 07:15:09 | HIGH (8) | An issue was discovered in Python 3.11 through 3.11.4. If a path containing '\0' bytes is passed to os.path.normpath(), the path will be truncated unexpectedly at the first '\0' byte. There are plausible cases in which an application would have rejected a filename for security reasons in Python 3.10.x or earlier, but that filename is no longer rejected in Python 3.11.x. | 4 | 4 | NETWORK |
CVE‑2023‑40217 | 2023‑08‑25 01:15:09 | MEDIUM (5) | An issue was discovered in Python before 3.8.18, 3.9.x before 3.9.18, 3.10.x before 3.10.13, and 3.11.x before 3.11.5. It primarily affects servers (such as HTTP servers) that use TLS client authentication. If a TLS server-side socket is created, receives data into the socket buffer, and then is closed quickly, there is a brief window where the SSLSocket instance will detect the socket as "not connected" and won't initiate a handshake, but buffered data will still be readable from the socket buffer. This data will not be authenticated if the server-side TLS peer is expecting client certificate authentication, and is indistinguishable from valid TLS stream data. Data is limited in size to the amount that will fit in the buffer. (The TLS connection cannot directly be used for data exfiltration because the vulnerable code path requires that the connection be closed on initialization of the SSLSocket.) | 4 | 1 | NETWORK |
CVE‑2023‑38898 | 2023‑08‑15 17:15:12 | MEDIUM (5) | An issue in Python cpython v.3.7 allows an attacker to obtain sensitive information via the _asyncio._swap_current_task component. NOTE: this is disputed by the vendor because (1) neither 3.7 nor any other release is affected (it is a bug in some 3.12 pre-releases); (2) there are no common scenarios in which an adversary can call _asyncio._swap_current_task but does not already have the ability to call arbitrary functions; and (3) there are no common scenarios in which sensitive information, which is not already accessible to an adversary, becomes accessible through this bug. | 4 | 1 | NETWORK |
CVE‑2023‑36632 | 2023‑06‑25 18:15:09 | HIGH (8) | The legacy email.utils.parseaddr function in Python through 3.11.4 allows attackers to trigger "RecursionError: maximum recursion depth exceeded while calling a Python object" via a crafted argument. This argument is plausibly an untrusted value from an application's input data that was supposed to contain a name and an e-mail address. NOTE: email.utils.parseaddr is categorized as a Legacy API in the documentation of the Python email package. Applications should instead use the email.parser.BytesParser or email.parser.Parser class. NOTE: the vendor's perspective is that this is neither a vulnerability nor a bug. The email package is intended to have size limits and to throw an exception when limits are exceeded; they were exceeded by the example demonstration code. | 4 | 4 | NETWORK |
CVE‑2023‑27043 | 2023‑04‑19 00:15:08 | MEDIUM (5) | The email module of Python through 3.11.3 incorrectly parses e-mail addresses that contain a special character. The wrong portion of an RFC2822 header is identified as the value of the addr-spec. In some applications, an attacker can bypass a protection mechanism in which application access is granted only after verifying receipt of e-mail to a specific domain (e.g., only @company.example.com addresses may be used for signup). This occurs in email/_parseaddr.py in recent versions of Python. | 4 | 1 | NETWORK |
CVE‑2023‑24329 | 2023‑02‑17 15:15:12 | HIGH (8) | An issue in the urllib.parse component of Python before 3.11.4 allows attackers to bypass blocklisting methods by supplying a URL that starts with blank characters. | 4 | 4 | NETWORK |
CVE‑2022‑48566 | 2023‑08‑22 19:16:32 | MEDIUM (6) | An issue was discovered in compare_digest in Lib/hmac.py in Python through 3.9.1. Constant-time-defeating optimisations were possible in the accumulator variable in hmac.compare_digest. | 2 | 4 | NETWORK |
CVE‑2022‑48565 | 2023‑08‑22 19:16:32 | CRITICAL (10) | An XML External Entity (XXE) issue was discovered in Python through 3.9.1. The plistlib module no longer accepts entity declarations in XML plist files to avoid XML vulnerabilities. | 4 | 6 | NETWORK |
CVE‑2022‑48564 | 2023‑08‑22 19:16:32 | MEDIUM (7) | read_ints in plistlib.py in Python through 3.9.1 is vulnerable to a potential DoS attack via CPU and RAM exhaustion when processing malformed Apple Property List files in binary format. | 3 | 4 | NETWORK |
CVE‑2022‑48560 | 2023‑08‑22 19:16:32 | HIGH (8) | A use-after-free exists in Python through 3.9 via heappushpop in heapq. | 4 | 4 | NETWORK |
CVE‑2022‑45061 | 2022‑11‑09 07:15:10 | HIGH (8) | An issue was discovered in Python before 3.11.1. An unnecessary quadratic algorithm exists in one path when processing some inputs to the IDNA (RFC 3490) decoder, such that a crafted, unreasonably long name being presented to the decoder could lead to a CPU denial of service. Hostnames are often supplied by remote servers that could be controlled by a malicious actor; in such a scenario, they could trigger excessive CPU consumption on the client attempting to make use of an attacker-supplied supposed hostname. For example, the attack payload could be placed in the Location header of an HTTP response with status code 302. A fix is planned in 3.11.1, 3.10.9, 3.9.16, 3.8.16, and 3.7.16. | 4 | 4 | NETWORK |
CVE‑2022‑42919 | 2022‑11‑07 00:15:10 | HIGH (8) | Python 3.9.x before 3.9.16 and 3.10.x before 3.10.9 on Linux allows local privilege escalation in a non-default configuration. The Python multiprocessing library, when used with the forkserver start method on Linux, allows pickles to be deserialized from any user in the same machine local network namespace, which in many system configurations means any user on the same machine. Pickles can execute arbitrary code. Thus, this allows for local user privilege escalation to the user that any forkserver process is running as. Setting multiprocessing.util.abstract_sockets_supported to False is a workaround. The forkserver start method for multiprocessing is not the default start method. This issue is Linux specific because only Linux supports abstract namespace sockets. CPython before 3.9 does not make use of Linux abstract namespace sockets by default. Support for users manually specifying an abstract namespace socket was added as a bugfix in 3.7.8 and 3.8.3, but users would need to make specific uncommon API calls in order to do that in CPython before 3.9. | 2 | 6 | LOCAL |
CVE‑2022‑26488 | 2022‑03‑10 17:47:45 | HIGH (7) | In Python before 3.10.3 on Windows, local users can gain privileges because the search path is inadequately secured. The installer may allow a local attacker to add user-writable directories to the system search path. To exploit, an administrator must have installed Python for all users and enabled PATH entries. A non-administrative user can trigger a repair that incorrectly adds user-writable paths into PATH, enabling search-path hijacking of other users and system services. This affects Python (CPython) through 3.7.12, 3.8.x through 3.8.12, 3.9.x through 3.9.10, and 3.10.x through 3.10.2. | 1 | 6 | LOCAL |
CVE‑2022‑0391 | 2022‑02‑09 23:15:17 | HIGH (8) | A flaw was found in Python, specifically within the urllib.parse module. This module helps break Uniform Resource Locator (URL) strings into components. The issue involves how the urlparse method does not sanitize input and allows characters like '\r' and '\n' in the URL path. This flaw allows an attacker to input a crafted URL, leading to injection attacks. This flaw affects Python versions prior to 3.10.0b1, 3.9.5, 3.8.11, 3.7.11 and 3.6.14. | 4 | 4 | NETWORK |
CVE‑2021‑4189 | 2022‑08‑24 16:15:10 | MEDIUM (5) | A flaw was found in Python, specifically in the FTP (File Transfer Protocol) client library in PASV (passive) mode. The issue is how the FTP client trusts the host from the PASV response by default. This flaw allows an attacker to set up a malicious FTP server that can trick FTP clients into connecting back to a given IP address and port. This vulnerability could lead to FTP client scanning ports, which otherwise would not have been possible. | 4 | 1 | NETWORK |
CVE‑2021‑3737 | 2022‑03‑04 19:15:09 | HIGH (8) | A flaw was found in python. An improperly handled HTTP response in the HTTP client code of python may allow a remote attacker, who controls the HTTP server, to make the client script enter an infinite loop, consuming CPU time. The highest threat from this vulnerability is to system availability. | 4 | 4 | NETWORK |
CVE‑2021‑3733 | 2022‑03‑10 17:43:00 | MEDIUM (7) | There's a flaw in urllib's AbstractBasicAuthHandler class. An attacker who controls a malicious HTTP server that an HTTP client (such as web browser) connects to, could trigger a Regular Expression Denial of Service (ReDOS) during an authentication request with a specially crafted payload that is sent by the server to the client. The greatest threat that this flaw poses is to application availability. | 3 | 4 | NETWORK |
CVE‑2021‑3426 | 2021‑05‑20 13:15:08 | MEDIUM (6) | There's a flaw in Python 3's pydoc. A local or adjacent attacker who discovers or is able to convince another local or adjacent user to start a pydoc server could access the server and use it to disclose sensitive information belonging to the other user that they would not normally be able to access. The highest risk of this flaw is to data confidentiality. This flaw affects Python versions before 3.8.9, Python versions before 3.9.3 and Python versions before 3.10.0a7. | 2 | 4 | ADJACENT_NETWORK |
CVE‑2021‑32052 | 2021‑05‑06 16:15:08 | MEDIUM (6) | In Django 2.2 before 2.2.22, 3.1 before 3.1.10, and 3.2 before 3.2.2 (with Python 3.9.5+), URLValidator does not prohibit newlines and tabs (unless the URLField form field is used). If an application uses values with newlines in an HTTP response, header injection can occur. Django itself is unaffected because HttpResponse prohibits newlines in HTTP headers. | 3 | 3 | NETWORK |
CVE‑2021‑3177 | 2021‑01‑19 06:15:13 | CRITICAL (10) | Python 3.x through 3.9.1 has a buffer overflow in PyCArg_repr in _ctypes/callproc.c, which may lead to remote code execution in certain Python applications that accept floating-point numbers as untrusted input, as demonstrated by a 1e300 argument to c_double.from_param. This occurs because sprintf is used unsafely. | 4 | 6 | NETWORK |
CVE‑2021‑29921 | 2021‑05‑06 13:15:13 | CRITICAL (10) | In Python before 3,9,5, the ipaddress library mishandles leading zero characters in the octets of an IP address string. This (in some situations) allows attackers to bypass access control that is based on IP addresses. | 4 | 6 | NETWORK |
CVE‑2021‑28861 | 2022‑08‑23 01:15:08 | HIGH (7) | Python 3.x through 3.10 has an open redirection vulnerability in lib/http/server.py due to no protection against multiple (/) at the beginning of URI path which may leads to information disclosure. NOTE: this is disputed by a third party because the http.server.html documentation page states "Warning: http.server is not recommended for production. It only implements basic security checks." | 3 | 4 | NETWORK |
CVE‑2021‑28667 | 2021‑03‑18 03:15:12 | HIGH (8) | StackStorm before 3.4.1, in some situations, has an infinite loop that consumes all available memory and disk space. This can occur if Python 3.x is used, the locale is not utf-8, and there is an attempt to log Unicode data (from an action or rule name). | 4 | 4 | NETWORK |
CVE‑2021‑23336 | 2021‑02‑15 13:15:12 | MEDIUM (6) | The package python/cpython from 0 and before 3.6.13, from 3.7.0 and before 3.7.10, from 3.8.0 and before 3.8.8, from 3.9.0 and before 3.9.2 are vulnerable to Web Cache Poisoning via urllib.parse.parse_qsl and urllib.parse.parse_qs by using a vector called parameter cloaking. When the attacker can separate query parameters using a semicolon (;), they can cause a difference in the interpretation of the request between the proxy (running with default configuration) and the server. This can result in malicious requests being cached as completely safe ones, as the proxy would usually not see the semicolon as a separator, and therefore would not include it in a cache key of an unkeyed parameter. | 2 | 4 | NETWORK |
CVE‑2020‑8492 | 2020‑01‑30 19:15:12 | MEDIUM (7) | Python 2.7 through 2.7.17, 3.5 through 3.5.9, 3.6 through 3.6.10, 3.7 through 3.7.6, and 3.8 through 3.8.1 allows an HTTP server to conduct Regular Expression Denial of Service (ReDoS) attacks against a client because of urllib.request.AbstractBasicAuthHandler catastrophic backtracking. | 3 | 4 | NETWORK |
CVE‑2020‑8315 | 2020‑01‑28 19:15:18 | MEDIUM (6) | In Python (CPython) 3.6 through 3.6.10, 3.7 through 3.7.6, and 3.8 through 3.8.1, an insecure dependency load upon launch on Windows 7 may result in an attacker's copy of api-ms-win-core-path-l1-1-0.dll being loaded and used instead of the system's copy. Windows 8 and later are unaffected. | 2 | 4 | LOCAL |
CVE‑2020‑29396 | 2020‑12‑22 17:15:14 | HIGH (9) | A sandboxing issue in Odoo Community 11.0 through 13.0 and Odoo Enterprise 11.0 through 13.0, when running with Python 3.6 or later, allows remote authenticated users to execute arbitrary code, leading to privilege escalation. | 3 | 6 | NETWORK |
CVE‑2020‑27619 | 2020‑10‑22 03:16:31 | CRITICAL (10) | In Python 3 through 3.9.0, the Lib/test/multibytecodec_support.py CJK codec tests call eval() on content retrieved via HTTP. | 4 | 6 | NETWORK |
CVE‑2020‑26116 | 2020‑09‑27 04:15:12 | HIGH (7) | http.client in Python 3.x before 3.5.10, 3.6.x before 3.6.12, 3.7.x before 3.7.9, and 3.8.x before 3.8.5 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of HTTPConnection.request. | 4 | 3 | NETWORK |
CVE‑2020‑15801 | 2020‑07‑17 03:15:11 | CRITICAL (10) | In Python 3.8.4, sys.path restrictions specified in a python38._pth file are ignored, allowing code to be loaded from arbitrary locations. The <executable-name>._pth file (e.g., the python._pth file) is not affected. | 4 | 6 | NETWORK |
CVE‑2020‑15523 | 2020‑07‑04 23:15:10 | HIGH (8) | In Python 3.6 through 3.6.10, 3.7 through 3.7.8, 3.8 through 3.8.4rc1, and 3.9 through 3.9.0b4 on Windows, a Trojan horse python3.dll might be used in cases where CPython is embedded in a native application. This occurs because python3X.dll may use an invalid search path for python3.dll loading (after Py_SetPath has been used). NOTE: this issue CANNOT occur when using python.exe from a standard (non-embedded) Python installation on Windows. | 2 | 6 | LOCAL |
CVE‑2020‑14422 | 2020‑06‑18 14:15:11 | MEDIUM (6) | Lib/ipaddress.py in Python through 3.8.3 improperly computes hash values in the IPv4Interface and IPv6Interface classes, which might allow a remote attacker to cause a denial of service if an application is affected by the performance of a dictionary containing IPv4Interface or IPv6Interface objects, and this attacker can cause many dictionary entries to be created. This is fixed in: v3.5.10, v3.5.10rc1; v3.6.12; v3.7.9; v3.8.4, v3.8.4rc1, v3.8.5, v3.8.6, v3.8.6rc1; v3.9.0, v3.9.0b4, v3.9.0b5, v3.9.0rc1, v3.9.0rc2. | 2 | 4 | NETWORK |
CVE‑2020‑10735 | 2022‑09‑09 14:15:09 | HIGH (8) | A flaw was found in python. In algorithms with quadratic time complexity using non-binary bases, when using int("text"), a system could take 50ms to parse an int string with 100,000 digits and 5s for 1,000,000 digits (float, decimal, int.from_bytes(), and int() for binary bases 2, 4, 8, 16, and 32 are not affected). The highest threat from this vulnerability is to system availability. | 4 | 4 | NETWORK |
CVE‑2019‑9948 | 2019‑03‑23 18:29:02 | CRITICAL (9) | urllib in Python 2.x through 2.7.16 supports the local_file: scheme, which makes it easier for remote attackers to bypass protection mechanisms that blacklist file: URIs, as demonstrated by triggering a urllib.urlopen('local_file:///etc/passwd') call. | 4 | 5 | NETWORK |
CVE‑2019‑9947 | 2019‑03‑23 18:29:02 | MEDIUM (6) | An issue was discovered in urllib2 in Python 2.x through 2.7.16 and urllib in Python 3.x through 3.7.3. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the first argument to urllib.request.urlopen with \r\n (specifically in the path component of a URL that lacks a ? character) followed by an HTTP header or a Redis command. This is similar to the CVE-2019-9740 query string issue. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.9, v3.6.9rc1; v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9. | 3 | 3 | NETWORK |
CVE‑2019‑9740 | 2019‑03‑13 03:29:00 | MEDIUM (6) | An issue was discovered in urllib2 in Python 2.x through 2.7.16 and urllib in Python 3.x through 3.7.3. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the first argument to urllib.request.urlopen with \r\n (specifically in the query string after a ? character) followed by an HTTP header or a Redis command. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.9, v3.6.9rc1; v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9. | 3 | 3 | NETWORK |
CVE‑2019‑9674 | 2020‑02‑04 15:15:12 | HIGH (8) | Lib/zipfile.py in Python through 3.7.2 allows remote attackers to cause a denial of service (resource consumption) via a ZIP bomb. | 4 | 4 | NETWORK |
CVE‑2019‑9636 | 2019‑03‑08 21:29:01 | CRITICAL (10) | Python 2.7.x through 2.7.16 and 3.x through 3.7.2 is affected by: Improper Handling of Unicode Encoding (with an incorrect netloc) during NFKC normalization. The impact is: Information disclosure (credentials, cookies, etc. that are cached against a given hostname). The components are: urllib.parse.urlsplit, urllib.parse.urlparse. The attack vector is: A specially crafted URL could be incorrectly parsed to locate cookies or authentication data and send that information to a different host than when parsed correctly. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.7, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.9, v3.6.9rc1; v3.7.3, v3.7.3rc1, v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9. | 4 | 6 | NETWORK |
CVE‑2019‑5010 | 2019‑10‑31 21:15:13 | HIGH (8) | An exploitable denial-of-service vulnerability exists in the X509 certificate parser of Python.org Python 2.7.11 / 3.6.6. A specially crafted X509 certificate can cause a NULL pointer dereference, resulting in a denial of service. An attacker can initiate or accept TLS connections using crafted certificates to trigger this vulnerability. | 4 | 4 | NETWORK |
CVE‑2019‑20907 | 2020‑07‑13 13:15:11 | HIGH (8) | In Lib/tarfile.py in Python through 3.8.3, an attacker is able to craft a TAR archive leading to an infinite loop when opened by tarfile.open, because _proc_pax lacks header validation. | 4 | 4 | NETWORK |
CVE‑2019‑18348 | 2019‑10‑23 17:15:13 | MEDIUM (6) | An issue was discovered in urllib2 in Python 2.x through 2.7.17 and urllib in Python 3.x through 3.8.0. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the first argument to urllib.request.urlopen with \r\n (specifically in the host component of a URL) followed by an HTTP header. This is similar to the CVE-2019-9740 query string issue and the CVE-2019-9947 path string issue. (This is not exploitable when glibc has CVE-2016-10739 fixed.). This is fixed in: v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1; v3.6.11, v3.6.11rc1, v3.6.12; v3.7.8, v3.7.8rc1, v3.7.9; v3.8.3, v3.8.3rc1, v3.8.4, v3.8.4rc1, v3.8.5, v3.8.6, v3.8.6rc1. | 3 | 3 | NETWORK |
CVE‑2019‑17514 | 2019‑10‑12 13:15:11 | HIGH (8) | library/glob.html in the Python 2 and 3 documentation before 2016 has potentially misleading information about whether sorting occurs, as demonstrated by irreproducible cancer-research results. NOTE: the effects of this documentation cross application domains, and thus it is likely that security-relevant code elsewhere is affected. This issue is not a Python implementation bug, and there are no reports that NMR researchers were specifically relying on library/glob.html. In other words, because the older documentation stated "finds all the pathnames matching a specified pattern according to the rules used by the Unix shell," one might have incorrectly inferred that the sorting that occurs in a Unix shell also occurred for glob.glob. There is a workaround in newer versions of Willoughby nmr-data_compilation-p2.py and nmr-data_compilation-p3.py, which call sort() directly. | 4 | 4 | NETWORK |
CVE‑2019‑16935 | 2019‑09‑28 02:15:10 | MEDIUM (6) | The documentation XML-RPC server in Python through 2.7.16, 3.x through 3.6.9, and 3.7.x through 3.7.4 has XSS via the server_title field. This occurs in Lib/DocXMLRPCServer.py in Python 2.x, and in Lib/xmlrpc/server.py in Python 3.x. If set_server_title is called with untrusted input, arbitrary JavaScript can be delivered to clients that visit the http URL for this server. | 3 | 3 | NETWORK |
CVE‑2019‑16056 | 2019‑09‑06 18:15:15 | HIGH (8) | An issue was discovered in Python through 2.7.16, 3.x through 3.5.7, 3.6.x through 3.6.9, and 3.7.x through 3.7.4. The email module wrongly parses email addresses that contain multiple @ characters. An application that uses the email module and implements some kind of checks on the From/To headers of a message could be tricked into accepting an email address that should be denied. An attack may be the same as in CVE-2019-11340; however, this CVE applies to Python more generally. | 4 | 4 | NETWORK |
CVE‑2019‑13404 | 2019‑07‑08 01:15:10 | HIGH (9) | The MSI installer for Python through 2.7.16 on Windows defaults to the C:\Python27 directory, which makes it easier for local users to deploy Trojan horse code. (This also affects old 3.x releases before 3.5.) NOTE: the vendor's position is that it is the user's responsibility to ensure C:\Python27 access control or choose a different directory, because backwards compatibility requires that C:\Python27 remain the default for 2.7.x | 0 | 0 | NETWORK |
CVE‑2019‑10160 | 2019‑06‑07 18:29:00 | CRITICAL (10) | A security regression of CVE-2019-9636 was discovered in python since commit d537ab0ff9767ef024f26246899728f0116b1ec3 affecting versions 2.7, 3.5, 3.6, 3.7 and from v3.8.0a4 through v3.8.0b1, which still allows an attacker to exploit CVE-2019-9636 by abusing the user and password parts of a URL. When an application parses user-supplied URLs to store cookies, authentication credentials, or other kind of information, it is possible for an attacker to provide specially crafted URLs to make the application locate host-related information (e.g. cookies, authentication data) and send them to a different host than where it should, unlike if the URLs had been correctly parsed. The result of an attack may vary based on the application. | 4 | 6 | NETWORK |
CVE‑2018‑20852 | 2019‑07‑13 21:15:10 | MEDIUM (5) | http.cookiejar.DefaultPolicy.domain_return_ok in Lib/http/cookiejar.py in Python before 3.7.3 does not correctly validate the domain: it can be tricked into sending existing cookies to the wrong server. An attacker may abuse this flaw by using a server with a hostname that has another valid hostname as a suffix (e.g., pythonicexample.com to steal cookies for example.com). When a program uses http.cookiejar.DefaultPolicy and tries to do an HTTP connection to an attacker-controlled server, existing cookies can be leaked to the attacker. This affects 2.x through 2.7.16, 3.x before 3.4.10, 3.5.x before 3.5.7, 3.6.x before 3.6.9, and 3.7.x before 3.7.3. | 0 | 0 | NETWORK |
CVE‑2018‑20406 | 2018‑12‑23 23:29:00 | MEDIUM (5) | Modules/_pickle.c in Python before 3.7.1 has an integer overflow via a large LONG_BINPUT value that is mishandled during a "resize to twice the size" attempt. This issue might cause memory exhaustion, but is only relevant if the pickle format is used for serializing tens or hundreds of gigabytes of data. This issue is fixed in: v3.4.10, v3.4.10rc1; v3.5.10, v3.5.10rc1, v3.5.7, v3.5.7rc1, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.7, v3.6.7rc1, v3.6.7rc2, v3.6.8, v3.6.8rc1, v3.6.9, v3.6.9rc1; v3.7.1, v3.7.1rc1, v3.7.1rc2, v3.7.2, v3.7.2rc1, v3.7.3, v3.7.3rc1, v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9. | 0 | 0 | NETWORK |
CVE‑2018‑14647 | 2018‑09‑25 00:29:01 | HIGH (8) | Python's elementtree C accelerator failed to initialise Expat's hash salt during initialization. This could make it easy to conduct denial of service attacks against Expat by constructing an XML document that would cause pathological hash collisions in Expat's internal data structures, consuming large amounts CPU and RAM. The vulnerability exists in Python versions 3.7.0, 3.6.0 through 3.6.6, 3.5.0 through 3.5.6, 3.4.0 through 3.4.9, 2.7.0 through 2.7.15. | 4 | 4 | NETWORK |
CVE‑2018‑1061 | 2018‑06‑19 12:29:00 | MEDIUM (5) | python before versions 2.7.15, 3.4.9, 3.5.6rc1, 3.6.5rc1 and 3.7.0 is vulnerable to catastrophic backtracking in the difflib.IS_LINE_JUNK method. An attacker could use this flaw to cause denial of service. | 0 | 0 | NETWORK |
CVE‑2018‑1060 | 2018‑06‑18 14:29:00 | HIGH (8) | python before versions 2.7.15, 3.4.9, 3.5.6rc1, 3.6.5rc1 and 3.7.0 is vulnerable to catastrophic backtracking in pop3lib's apop() method. An attacker could use this flaw to cause denial of service. | 4 | 4 | NETWORK |
CVE‑2018‑100080 | 2018‑09‑18 17:29:01 | CRITICAL (10) | Python Software Foundation Python (CPython) version 2.7 contains a CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') vulnerability in shutil module (make_archive function) that can result in Denial of service, Information gain via injection of arbitrary files on the system or entire drive. This attack appear to be exploitable via Passage of unfiltered user input to the function. This vulnerability appears to have been fixed in after commit add531a1e55b0a739b0f42582f1c9747e5649ace. | 4 | 6 | NETWORK |
CVE‑2018‑100011 | 2018‑03‑07 14:29:00 | MEDIUM (7) | Python Software Foundation CPython version From 3.2 until 3.6.4 on Windows contains a Buffer Overflow vulnerability in os.symlink() function on Windows that can result in Arbitrary code execution, likely escalation of privilege. This attack appears to be exploitable via a python script that creates a symlink with an attacker controlled name or location. This vulnerability appears to have been fixed in 3.7.0 and 3.6.5. | 1 | 6 | LOCAL |
CVE‑2018‑100003 | 2018‑02‑08 17:29:00 | LOW (4) | Python 2.7.14 is vulnerable to a Heap-Buffer-Overflow as well as a Heap-Use-After-Free. Python versions prior to 2.7.14 may also be vulnerable and it appears that Python 2.7.17 and prior may also be vulnerable however this has not been confirmed. The vulnerability lies when multiply threads are handling large amounts of data. In both cases there is essentially a race condition that occurs. For the Heap-Buffer-Overflow, Thread 2 is creating the size for a buffer, but Thread1 is already writing to the buffer without knowing how much to write. So when a large amount of data is being processed, it is very easy to cause memory corruption using a Heap-Buffer-Overflow. As for the Use-After-Free, Thread3->Malloc->Thread1->Free's->Thread2-Re-uses-Free'd Memory. The PSRT has stated that this is not a security vulnerability due to the fact that the attacker must be able to run code, however in some situations, such as function as a service, this vulnerability can potentially be used by an attacker to violate a trust boundary, as such the DWF feels this issue deserves a CVE. | 1 | 3 | LOCAL |
CVE‑2017‑20052 | 2022‑06‑16 07:15:07 | HIGH (8) | A vulnerability classified as problematic was found in Python 2.7.13. This vulnerability affects unknown code of the component pgAdmin4. The manipulation leads to uncontrolled search path. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. | 2 | 6 | LOCAL |
CVE‑2017‑18207 | 2018‑03‑01 05:29:00 | MEDIUM (4) | The Wave_read._read_fmt_chunk function in Lib/wave.py in Python through 3.6.4 does not ensure a nonzero channel value, which allows attackers to cause a denial of service (divide-by-zero and exception) via a crafted wav format audio file. NOTE: the vendor disputes this issue because Python applications "need to be prepared to handle a wide variety of exceptions. | 0 | 0 | NETWORK |
CVE‑2017‑17522 | 2017‑12‑14 16:29:01 | MEDIUM (7) | Lib/webbrowser.py in Python through 3.6.3 does not validate strings before launching the program specified by the BROWSER environment variable, which might allow remote attackers to conduct argument-injection attacks via a crafted URL. NOTE: a software maintainer indicates that exploitation is impossible because the code relies on subprocess.Popen and the default shell=False setting | 0 | 0 | NETWORK |
CVE‑2017‑100015 | 2017‑11‑17 05:29:00 | CRITICAL (10) | CPython (aka Python) up to 2.7.13 is vulnerable to an integer overflow in the PyString_DecodeEscape function in stringobject.c, resulting in heap-based buffer overflow (and possible arbitrary code execution) | 4 | 6 | NETWORK |
CVE‑2016‑5699 | 2016‑09‑02 14:59:07 | MEDIUM (4) | CRLF injection vulnerability in the HTTPConnection.putheader function in urllib2 and urllib in CPython (aka Python) before 2.7.10 and 3.x before 3.4.4 allows remote attackers to inject arbitrary HTTP headers via CRLF sequences in a URL. | 0 | 0 | NETWORK |
CVE‑2016‑5636 | 2016‑09‑02 14:59:06 | HIGH (10) | Integer overflow in the get_data function in zipimport.c in CPython (aka Python) before 2.7.12, 3.x before 3.4.5, and 3.5.x before 3.5.2 allows remote attackers to have unspecified impact via a negative data size value, which triggers a heap-based buffer overflow. | 0 | 0 | NETWORK |
CVE‑2016‑2183 | 2016‑09‑01 00:59:00 | HIGH (8) | The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack. | 4 | 4 | NETWORK |
CVE‑2016‑100011 | 2019‑11‑27 17:15:14 | MEDIUM (6) | The CGIHandler class in Python before 2.7.12 does not protect against the HTTP_PROXY variable name clash in a CGI script, which could allow a remote attacker to redirect HTTP requests. | 3 | 3 | NETWORK |
CVE‑2016‑0772 | 2016‑09‑02 14:59:00 | MEDIUM (6) | The smtplib library in CPython (aka Python) before 2.7.12, 3.x before 3.4.5, and 3.5.x before 3.5.2 does not return an error when StartTLS fails, which might allow man-in-the-middle attackers to bypass the TLS protections by leveraging a network position between the client and the registry to block the StartTLS command, aka a "StartTLS stripping attack." | 0 | 0 | NETWORK |
CVE‑2015‑5652 | 2015‑10‑06 01:59:27 | HIGH (7) | Untrusted search path vulnerability in python.exe in Python through 3.5.0 on Windows allows local users to gain privileges via a Trojan horse readline.pyd file in the current working directory. NOTE: the vendor says "It was determined that this is a longtime behavior of Python that cannot really be altered at this point." | 0 | 0 | LOCAL |
CVE‑2015‑20107 | 2022‑04‑13 16:15:09 | HIGH (8) | In Python (aka CPython) up to 3.10.8, the mailcap module does not add escape characters into commands discovered in the system mailcap file. This may allow attackers to inject shell commands into applications that call mailcap.findmatch with untrusted input (if they lack validation of user-provided filenames or arguments). The fix is also back-ported to 3.7, 3.8, 3.9 | 3 | 5 | NETWORK |
CVE‑2015‑1283 | 2015‑07‑23 00:59:13 | MEDIUM (7) | Multiple integer overflows in the XML_GetBuffer function in Expat through 2.1.0, as used in Google Chrome before 44.0.2403.89 and other products, allow remote attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact via crafted XML data, a related issue to CVE-2015-2716. | 0 | 0 | NETWORK |
CVE‑2014‑9365 | 2014‑12‑12 11:59:07 | MEDIUM (6) | The HTTP clients in the (1) httplib, (2) urllib, (3) urllib2, and (4) xmlrpclib libraries in CPython (aka Python) 2.x before 2.7.9 and 3.x before 3.4.3, when accessing an HTTPS URL, do not (a) check the certificate against a trust store or verify that the server hostname matches a domain name in the subject's (b) Common Name or (c) subjectAltName field of the X.509 certificate, which allows man-in-the-middle attackers to spoof SSL servers via an arbitrary valid certificate. | 0 | 0 | NETWORK |
CVE‑2014‑7185 | 2014‑10‑08 17:55:05 | MEDIUM (6) | Integer overflow in bufferobject.c in Python before 2.7.8 allows context-dependent attackers to obtain sensitive information from process memory via a large size and offset in a "buffer" function. | 0 | 0 | NETWORK |
CVE‑2014‑4650 | 2020‑02‑20 17:15:12 | CRITICAL (10) | The CGIHTTPServer module in Python 2.7.5 and 3.3.4 does not properly handle URLs in which URL encoding is used for path separators, which allows remote attackers to read script source code or conduct directory traversal attacks and execute unintended code via a crafted character sequence, as demonstrated by a %2f separator. | 4 | 6 | NETWORK |
CVE‑2014‑4616 | 2017‑08‑24 20:29:00 | MEDIUM (6) | Array index error in the scanstring function in the _json module in Python 2.7 through 3.5 and simplejson before 2.6.1 allows context-dependent attackers to read arbitrary process memory via a negative index value in the idx argument to the raw_decode function. | 2 | 4 | NETWORK |
CVE‑2014‑2667 | 2014‑11‑16 01:59:02 | LOW (3) | Race condition in the _get_masked_mode function in Lib/os.py in Python 3.2 through 3.5, when exist_ok is set to true and multiple threads are used, might allow local users to bypass intended file permissions by leveraging a separate application vulnerability before the umask has been set to the expected value. | 0 | 0 | LOCAL |
CVE‑2014‑1912 | 2014‑03‑01 00:55:05 | HIGH (8) | Buffer overflow in the socket.recvfrom_into function in Modules/socketmodule.c in Python 2.5 before 2.7.7, 3.x before 3.3.4, and 3.4.x before 3.4rc1 allows remote attackers to execute arbitrary code via a crafted string. | 0 | 0 | NETWORK |
CVE‑2014‑0224 | 2014‑06‑05 21:55:08 | HIGH (7) | OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability. | 2 | 5 | NETWORK |
CVE‑2013‑7440 | 2016‑06‑07 18:59:00 | MEDIUM (4) | The ssl.match_hostname function in CPython (aka Python) before 2.7.9 and 3.x before 3.3.3 does not properly handle wildcards in hostnames, which might allow man-in-the-middle attackers to spoof servers via a crafted certificate. | 0 | 0 | NETWORK |
CVE‑2013‑7338 | 2014‑04‑22 14:23:35 | HIGH (7) | Python before 3.3.4 RC1 allows remote attackers to cause a denial of service (infinite loop and CPU consumption) via a file size value larger than the size of the zip file to the (1) ZipExtFile.read, (2) ZipExtFile.read(n), (3) ZipExtFile.readlines, (4) ZipFile.extract, or (5) ZipFile.extractall function. | 0 | 0 | NETWORK |
CVE‑2013‑7040 | 2014‑05‑19 14:55:10 | MEDIUM (4) | Python 2.7 before 3.4 only uses the last eight bits of the prefix to randomize hash values, which causes it to compute hash values without restricting the ability to trigger hash collisions predictably and makes it easier for context-dependent attackers to cause a denial of service (CPU consumption) via crafted input to an application that maintains a hash table. NOTE: this vulnerability exists because of an incomplete fix for CVE-2012-1150. | 0 | 0 | NETWORK |
CVE‑2013‑4238 | 2013‑08‑18 02:52:23 | MEDIUM (4) | The ssl.match_hostname function in the SSL module in Python 2.6 through 3.4 does not properly handle a '\0' character in a domain name in the Subject Alternative Name field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408. | 0 | 0 | NETWORK |
CVE‑2013‑2099 | 2013‑10‑09 14:53:20 | MEDIUM (4) | Algorithmic complexity vulnerability in the ssl.match_hostname function in Python 3.2.x, 3.3.x, and earlier, and unspecified versions of python-backports-ssl_match_hostname as used for older Python versions, allows remote attackers to cause a denial of service (CPU consumption) via multiple wildcard characters in the common name in a certificate. | 0 | 0 | NETWORK |
CVE‑2013‑1753 | 2020‑03‑11 17:15:13 | HIGH (8) | The gzip_decode function in the xmlrpc client library in Python 3.4 and earlier allows remote attackers to cause a denial of service (memory consumption) via a crafted HTTP request. | 4 | 4 | NETWORK |
CVE‑2012‑2135 | 2012‑08‑14 22:55:01 | MEDIUM (6) | The utf-16 decoder in Python 3.1 through 3.3 does not update the aligned_end variable after calling the unicode_decode_call_errorhandler function, which allows remote attackers to obtain sensitive information (process memory) or cause a denial of service (memory corruption and crash) via unspecified vectors. | 0 | 0 | NETWORK |
CVE‑2012‑1150 | 2012‑10‑05 21:55:01 | MEDIUM (5) | Python before 2.6.8, 2.7.x before 2.7.3, 3.x before 3.1.5, and 3.2.x before 3.2.3 computes hash values without restricting the ability to trigger hash collisions predictably, which allows context-dependent attackers to cause a denial of service (CPU consumption) via crafted input to an application that maintains a hash table. | 0 | 0 | NETWORK |
CVE‑2012‑0845 | 2012‑10‑05 21:55:01 | MEDIUM (5) | SimpleXMLRPCServer.py in SimpleXMLRPCServer in Python before 2.6.8, 2.7.x before 2.7.3, 3.x before 3.1.5, and 3.2.x before 3.2.3 allows remote attackers to cause a denial of service (infinite loop and CPU consumption) via an XML-RPC POST request that contains a smaller amount of data than specified by the Content-Length header. | 0 | 0 | NETWORK |
CVE‑2011‑4944 | 2012‑08‑27 23:55:01 | LOW (2) | Python 2.6 through 3.2 creates ~/.pypirc with world-readable permissions before changing them after data has been written, which introduces a race condition that allows local users to obtain a username and password by reading this file. | 0 | 0 | LOCAL |
CVE‑2011‑4940 | 2012‑06‑27 10:18:36 | LOW (3) | The list_directory function in Lib/SimpleHTTPServer.py in SimpleHTTPServer in Python before 2.5.6c1, 2.6.x before 2.6.7 rc2, and 2.7.x before 2.7.2 does not place a charset parameter in the Content-Type HTTP header, which makes it easier for remote attackers to conduct cross-site scripting (XSS) attacks against Internet Explorer 7 via UTF-7 encoding. | 0 | 0 | NETWORK |
CVE‑2011‑1521 | 2011‑05‑24 23:55:03 | MEDIUM (6) | The urllib and urllib2 modules in Python 2.x before 2.7.2 and 3.x before 3.2.1 process Location headers that specify redirection to file: URLs, which makes it easier for remote attackers to obtain sensitive information or cause a denial of service (resource consumption) via a crafted URL, as demonstrated by the file:///etc/passwd and file:///dev/zero URLs. | 0 | 0 | NETWORK |
CVE‑2011‑1015 | 2011‑05‑09 22:55:02 | MEDIUM (5) | The is_cgi method in CGIHTTPServer.py in the CGIHTTPServer module in Python 2.5, 2.6, and 3.0 allows remote attackers to read script source code via an HTTP GET request that lacks a / (slash) character at the beginning of the URI. | 0 | 0 | NETWORK |
CVE‑2010‑3493 | 2010‑10‑19 20:00:04 | MEDIUM (4) | Multiple race conditions in smtpd.py in the smtpd module in Python 2.6, 2.7, 3.1, and 3.2 alpha allow remote attackers to cause a denial of service (daemon outage) by establishing and then immediately closing a TCP connection, leading to the accept function having an unexpected return value of None, an unexpected value of None for the address, or an ECONNABORTED, EAGAIN, or EWOULDBLOCK error, or the getpeername function having an ENOTCONN error, a related issue to CVE-2010-3492. | 0 | 0 | NETWORK |
CVE‑2010‑3492 | 2010‑10‑19 20:00:04 | MEDIUM (5) | The asyncore module in Python before 3.2 does not properly handle unsuccessful calls to the accept function, and does not have accompanying documentation describing how daemon applications should handle unsuccessful calls to the accept function, which makes it easier for remote attackers to conduct denial of service attacks that terminate these applications via network connections. | 0 | 0 | NETWORK |
CVE‑2010‑2089 | 2010‑05‑27 19:30:02 | MEDIUM (5) | The audioop module in Python 2.7 and 3.2 does not verify the relationships between size arguments and byte string lengths, which allows context-dependent attackers to cause a denial of service (memory corruption and application crash) via crafted arguments, as demonstrated by a call to audioop.reverse with a one-byte string, a different vulnerability than CVE-2010-1634. | 0 | 0 | NETWORK |
CVE‑2010‑1634 | 2010‑05‑27 19:30:02 | MEDIUM (5) | Multiple integer overflows in audioop.c in the audioop module in Python 2.6, 2.7, 3.1, and 3.2 allow context-dependent attackers to cause a denial of service (application crash) via a large fragment, as demonstrated by a call to audioop.lin2lin with a long string in the first argument, leading to a buffer overflow. NOTE: this vulnerability exists because of an incorrect fix for CVE-2008-3143.5. | 0 | 0 | NETWORK |
CVE‑2010‑1450 | 2010‑05‑27 19:30:02 | HIGH (8) | Multiple buffer overflows in the RLE decoder in the rgbimg module in Python 2.5 allow remote attackers to have an unspecified impact via an image file containing crafted data that triggers improper processing within the (1) longimagedata or (2) expandrow function. | 0 | 0 | NETWORK |
CVE‑2010‑1449 | 2010‑05‑27 19:30:02 | HIGH (8) | Integer overflow in rgbimgmodule.c in the rgbimg module in Python 2.5 allows remote attackers to have an unspecified impact via a large image that triggers a buffer overflow. NOTE: this vulnerability exists because of an incomplete fix for CVE-2008-3143.12. | 0 | 0 | NETWORK |
Patch more applications, achieve compliance, and prevent problems while reducing stress with Lavawall®.
A security tool by security auditors. From Passkeys and Argon2i to source validation and MVSP principles, Lavawall® has you covered.
More features and more security added nearly every day.
While Ninite and other patching tools have had the same patch offerings for decades, we're monitoring stats to keep adding the most useful programs (currently over 7,463)!
From wrapping TLS communications in extra encryption and uninstalling remote support tools when they aren't used to detailed statistical analysis of system and network performance, Lavawall® goes in-depth.
Lavawall® goes beyond patches and breach detection. We also monitor for risky Chromium extensions and allowed notifications that might be part of a phishing or ransomware attack.
Extend the security features of Cloudflare, Microsoft, Google, Sophos, and other cloud providers to create a Lavawall® of protection
Even if you used breached remote management tools like ScreenConnect through Lavawall® when it was vulnerable, your computers stayed safe because we only install the agent when it needs to be used.
Easily deploy, monitor, and analyze security tools like Huntress, AutoElevate, and Sophos. Magically gain details from ZenDesk, ConnectWise, Datto, Panorama9, Microsoft, and Google.
Get immediate fixes, user notifications, admin notifications -- and even security-certified human level 3 support when our advanced statistical analysis confirms a problem or anomaly.
2024‑12‑02 | 0.12.19.206 | test commit |
2024‑11‑22 | 0.12.18.205 | |
2024‑10‑30 | 0.12.8.195 | Mac update refinements |
2024‑10‑25 | 0.12.3.190 | |
2024‑10‑21 | 0.12.0.187 | Macos implementaiton, linux and windows improvements |
2024‑10‑16 | 0.11.128.186 | Linux stats and system information improvements, improvements for application shutdown |
2024‑09‑12 | 0.11.113.171 | CPU Optimizations and Packages reliability improvements |
2024‑09‑05 | 0.11.106.164 | Phased deployment enhancements |
2024‑09‑04 | 0.11.103.161 | |
2024‑09‑02 | 0.11.102.160 | CPU Optimizations and Packages reliability improvements |
2024‑08‑30 | 0.11.99.157 | CPU Optimizations and Packages reliability improvements |
2024‑08‑29 | 0.11.98.156 | CPU utilization and console event optimization |
2024‑08‑28 | 0.11.97.155 | Reliability to detect unusual updates like redistributables. |
2024‑08‑27 | 0.11.96.154 | |
2024‑08‑26 | 0.11.95.153 | Faster response for reboot requests |
2024‑08‑20 | 0.11.92.150 | Additional package upgrade pre-requisites |
2024‑08‑15 | 0.11.89.147 | |
2024‑08‑06 | 0.11.87.145 | |
2024‑07‑26 | 0.11.83.141 | Add resiliency for MAC duplicates and uptime |
2024‑07‑25 | 0.11.82.140 | Changes to facilitate cross-platform use. Bitlocker and Windows key refinements |
2024‑07‑15 | 0.11.80.138 | Antivirus and temperature added to configuration checks |
2024‑07‑15 | 0.11.79.137 | Add configuration checks for execution policy and secure boot |
2024‑07‑11 | 0.11.77.135 | load balancing refinements |
2024‑07‑10 | 0.11.76.134 | Add additional load balancing and data residency capabilities, add randomness to recurring task timings to decrease server load |
2024‑07‑05 | 0.11.74.132 | changes to graph and residual work on user imporsonation |
2024‑07‑04 | 0.11.73.131 | Add configuration checks for execution policy and secure boot. |
2024‑07‑03 | 0.11.72.130 | Enhanced event log monitoring |
2024‑07‑02 | 0.11.71.129 | Add details to Windows updates, enhanced risk metrics for application patches |
2024‑06‑19 | 0.11.65.123 | Update resiliancy and garbage collection |
2024‑06‑13 | 0.11.60.118 | Enhanced logging |
2024‑06‑12 | 0.11.55.113 | Include the primary drive serial number; MAC addresses for built-in wireless, Bluetooth, and ethernet into the device hash to restore uninstalled and reinstalled devices in cases where the motherboard serial is not unique |
2024‑06‑07 | 0.11.54.112 | Patch and package uninstall data addition |
2024‑06‑05 | 0.11.47.105 | refine per-user registry application listing |
2024‑06‑02 | 0.11.45.103 | uninstall and reinstall refinements, refine local logging, refine self-update and uninstall timing |
2024‑05‑30 | 0.11.21.79 | various bug fixes and improvements |
2024‑05‑28 | 0.11.16.74 | Error logging, registration, and uninstall improvements. |
2024‑05‑24 | 0.11.14.72 | applied changes for devices and login commands, changes for registration as well |
2024‑05‑22 | 0.11.13.71 | Add Windows computer model, improve Operating System parsing |
2024‑05‑21 | 0.11.11.69 | Added additional states for Windows update, flexibility for non-standard program file configurations, support for network diagrams at the switch level, details for Windows editions |
2024‑05‑21 | 0.11.10.68 | Add specific cases for Defender patterns and Composer versions. |
2024‑05‑17 | 0.11.3.61 | Change Log storage location to c:\program files\Lavawall |
2024‑05‑17 | 0.11.1.59 | self-update improvements. |
2024‑05‑16 | 0.8.0.55 | error log reporting and management. |
2024‑05‑15 | 0.7.0.54 | Websocket resiliency improvements |
2024‑05‑09 | 0.6.0.53 | Error log reporting and management. |
2024‑05‑01 | 0.5.44.52 | Even more improvements to scheduler |
2024‑04‑24 | 0.5.41.49 | Install compatibility with Sandbox |
2024‑04‑22 | 0.5.21.29 | Project property changes to enable automated compilation with new features. |
2024‑04‑20 | 0.5.20.28 | Add motherboard serial number and company reassignment |
2024‑04‑11 | 0.5.4.12 | Automate release notes as part of build process |
2024‑05‑20 | 253 | Added cleanup of old .json files during a re-install |
2024‑05‑13 | 252 | Added apt-get update to install |
2024‑05‑06 | 248 | Allow restart to use /var/run/reboot-required if needrestart is not installed |
2024‑04‑22 | 239 | Improve internal update and version tracking |
2024‑04‑15 | 235 | Add support for Yum packages |
2024‑04‑08 | 233 | Align patching with Windows patch reporting |
2024‑04‑02 | 228 | Add support for needrestart |
2024‑03‑04 | 224 | Schedule restarts |
2024‑03‑25 | 221 | Add support for apt packages |
2024‑03‑18 | 212 | Implement release management |
2024‑03‑11 | 202 | Add user login monitoring |
2024‑03‑04 | 189 | Enhance installation reliability |
2024‑02‑26 | 187 | Exapand triggers to identify if the instance needs to be restarted |
2024‑02‑19 | 146 | Improve compatibility for non-AWS instances |
2024‑02‑14 | 138 | Add self-uninstall capabilities |
2024‑02‑12 | 135 | Enhance scheduling flexibility |
2024‑02‑07 | 132 | Add kernel version tracking |
2024‑02‑05 | 124 | Add device hash to cryptographic self-update script validation |
2024‑01‑29 | 107 | Enhance encryption of patch data |
2024‑01‑22 | 98 | Improve how available storage is calculated |
2024‑01‑15 | 97 | Move initial tasks from installation file to sub scripts |
2024‑05‑21 | 91 | Improve multi-distribution compatibility |
2024‑05‑21 | 79 | Improve encryption reliability |
2023‑12‑11 | 68 | Enhance cryptographic validation of new scripts before updating |
2023‑11‑20 | 62 | Add inner layer of AES encryption in case TLS inspection doesn't allow for a secure connection |
2023‑11‑27 | 56 | Additional base cases for resiliancy |
2023‑11‑20 | 54 | Additional headers added to authentication process during installation. |
2023‑11‑20 | 53 | Enhanced key management |
2023‑11‑15 | 51 | Add insecure installation parameter to allow installation in environments with TLS inspection or other machine-in-the-middle situations. |
2023‑11‑06 | 42 | Enhance redundant encryption during installation. |
2023‑10‑30 | 33 | Improve install-over compatibility |
2023‑10‑23 | 18 | Add reboot configuration and scheduling |
2023‑10‑23 | 17 | Add self-updating functionality. |
2023‑10‑16 | 15 | Add Linux patching information for apt |
2023‑10‑09 | 14 | Collect system information |
2023‑10‑09 | 13 | Add Linux distribution information |
2023‑09‑30 | 12 | Add memory monitoring |
2023‑09‑30 | 10 | Add hardware information |
2023‑09‑23 | 9 | Add AWS information |
2023‑09‑23 | 8 | Add customized schedule capability for configuration updates |
2023‑09‑23 | 7 | Add support for package monitoring using package and dpkg logs |
2023‑09‑16 | 6 | Add storage data configuration gathering |
2023‑09‑16 | 5 | Add CPU information |
Lavawall® is under active development with the latest release including:
Monitored Applications
System Metrics
Lavawall® prevents the 80% of breaches and failed audits due to missing patches and updates.
You can reduce application patching delays from 67 days to nearly immediate with the 350+ applications that Lavawall® monitors and patches.