Go Programming Language
Update Go Programming Language to version 1.23.1

What patches are you missing?



CVE Vulnerabilities for Go Programming Language

CVEPublishedSeverityDetailsExploitability Impact Vector
CVE‑2023‑452832023‑11‑09 17:15:09HIGH (8)The filepath package does not recognize paths with a \??\ prefix as special. On Windows, a path beginning with \??\ is a Root Local Device path equivalent to a path beginning with \\?\. Paths with a \??\ prefix may be used to access arbitrary locations on the system. For example, the path \??\c:\x is equivalent to the more common path c:\x. Before fix, Clean could convert a rooted path such as \a\..\??\b into the root local device path \??\b. Clean will now convert this to .\??\b. Similarly, Join(\, ??, b) could convert a seemingly innocent sequence of path elements into the root local device path \??\b. Join will now convert this to \.\??\b. In addition, with fix, IsAbs now correctly reports paths beginning with \??\ as absolute, and VolumeName correctly reports the \??\ prefix as a volume name. UPDATE: Go 1.20.11 and Go 1.21.4 inadvertently changed the definition of the volume name in Windows paths starting with \?, resulting in filepath.Clean(\?\c:) returning \?\c: rather than \?\c:\ (among other effects). The previous behavior has been restored.44NETWORK
CVE‑2023‑393252023‑10‑11 22:15:10HIGH (8)A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing. With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection. This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2. The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.44NETWORK
CVE‑2023‑393232023‑10‑05 21:15:11HIGH (8)Line directives ("//line") can be used to bypass the restrictions on "//go:cgo_" directives, allowing blocked linker and compiler flags to be passed during compilation. This can result in unexpected execution of arbitrary code when running "go build". The line directive requires the absolute path of the file in which the directive lives, which makes exploiting this issue significantly more complex.26NETWORK
CVE‑2023‑245382023‑04‑06 16:15:08CRITICAL (10)Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected. Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template. As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml. With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21. Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution.46NETWORK
CVE‑2022‑417232023‑02‑28 18:15:10HIGH (8)A maliciously crafted HTTP/2 stream could cause excessive CPU consumption in the HPACK decoder, sufficient to cause a denial of service from a small number of small requests.44NETWORK
CVE‑2022‑417222023‑02‑28 18:15:10HIGH (8)A path traversal vulnerability exists in filepath.Clean on Windows. On Windows, the filepath.Clean function could transform an invalid path such as "a/../c:/b" into the valid path "c:\b". This transformation of a relative (if invalid) path into an absolute path could enable a directory traversal attack. After fix, the filepath.Clean function transforms this path into the relative (but still invalid) path ".\c:\b".44NETWORK
CVE‑2022‑306292022‑08‑10 20:15:41LOW (3)Non-random values for ticket_age_add in session tickets in crypto/tls before Go 1.17.11 and Go 1.18.3 allow an attacker that can observe TLS handshakes to correlate successive connections by comparing ticket ages during session resumption.21NETWORK
CVE‑2022‑298042022‑08‑10 20:15:35HIGH (8)Incorrect conversion of certain invalid paths to valid, absolute paths in Clean in path/filepath before Go 1.17.11 and Go 1.18.3 on Windows allows potential directory traversal attack.44NETWORK
CVE‑2022‑28792022‑10‑14 15:15:18HIGH (8)Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB.44NETWORK
CVE‑2021‑447162022‑01‑01 05:15:08HIGH (8)net/http in Go before 1.16.12 and 1.17.x before 1.17.5 allows uncontrolled memory consumption in the header canonicalization cache via HTTP/2 requests.44NETWORK
CVE‑2021‑331942021‑05‑26 15:15:08HIGH (8)golang.org/x/net before v0.0.0-20210520170846-37e1c6afe023 allows attackers to cause a denial of service (infinite loop) via crafted ParseFragment input.44NETWORK
CVE‑2021‑237722021‑12‑24 12:15:08HIGH (9)This affects all versions of package github.com/kataras/iris; all versions of package github.com/kataras/iris/v12. The unsafe handling of file names during upload using UploadFormFiles method may enable attackers to write to arbitrary locations outside the designated target folder.36NETWORK
CVE‑2019‑148092019‑08‑13 21:15:11HIGH (8)net/url in Go before 1.11.13 and 1.12.x before 1.12.8 mishandles malformed hosts in URLs, leading to an authorization bypass in some applications. This is related to a Host field with a suffix appearing in neither Hostname() nor Port(), and is related to a non-numeric port number. For example, an attacker can compose a crafted javascript:// URL that results in a hostname of google.com.00NETWORK
CVE‑2018‑168732018‑12‑14 14:29:00HIGH (8)In Go before 1.10.6 and 1.11.x before 1.11.3, the "go get" command is vulnerable to remote code execution when executed with the -u flag and the import path of a malicious Go package, or a package that imports it directly or indirectly. Specifically, it is only vulnerable in GOPATH mode, but not in module mode (the distinction is documented at https://golang.org/cmd/go/#hdr-Module_aware_go_get). Using custom domains, it's possible to arrange things so that a Git repository is cloned to a folder named ".git" by using a vanity import path that ends with "/.git". If the Git repository root contains a "HEAD" file, a "config" file, an "objects" directory, a "refs" directory, with some work to ensure the proper ordering of operations, "go get -u" can be tricked into considering the parent directory as a repository root, and running Git commands on it. That will use the "config" file in the original Git repository root for its configuration, and if that config file contains malicious commands, they will execute on the system running "go get -u".26NETWORK
CVE‑2017‑89322017‑07‑06 16:29:00MEDIUM (4)A bug in the standard library ScalarMult implementation of curve P-256 for amd64 architectures in Go before 1.7.6 and 1.8.x before 1.8.2 causes incorrect results to be generated for specific input points. An adaptive attack can be mounted to progressively extract the scalar input to ScalarMult by submitting crafted points and observing failures to the derive correct output. This leads to a full key recovery attack against static ECDH, as used in popular JWT libraries.00NETWORK
CVE‑2017‑150412017‑10‑05 21:29:00CRITICAL (10)Go before 1.8.4 and 1.9.x before 1.9.1 allows "go get" remote command execution. Using custom domains, it is possible to arrange things so that example.com/pkg1 points to a Subversion repository but example.com/pkg1/pkg2 points to a Git repository. If the Subversion repository includes a Git checkout in its pkg2 directory and some other work is done to ensure the proper ordering of operations, "go get" can be tricked into reusing this Git checkout for the fetch of code from pkg2. If the Subversion repository's Git checkout has malicious commands in .git/hooks/, they will execute on the system running "go get."46NETWORK
CVE‑2012‑26662021‑07‑09 11:15:08CRITICAL (10)golang/go in 1.0.2 fixes all.bash on shared machines. dotest() in src/pkg/debug/gosym/pclntab_test.go creates a temporary file with predicable name and executes it as shell script.46NETWORK

Get the IT stuff done that nobody wants to do.

Patch more applications, achieve compliance, and prevent problems while reducing stress with Lavawall®.

Security First

A security tool by security auditors. From Passkeys and Argon2i to source validation and MVSP principles, Lavawall® has you covered.

Constant Improvement

More features and more security added nearly every day.

More patchable programs added every week

While Ninite and other patching tools have had the same patch offerings for decades, we're monitoring stats to keep adding the most useful prorgams.

Details matter

From wrapping TLS communications in extra encryption and uninstalling remote support tools when they aren't used to detailed statistical analysis of system and network performance, Lavawall® goes in-depth.

Chromium extensions and Notification Validation

Lavawall® goes beyond patches and breach detection. We also monitor for risky Chromium extensions and allowed notifications that might be part of a phishing or ransomware attack.

Extended Cloud Security

Extend the security features of Cloudflare, Microsoft, Google, Sophos, and other cloud providers to create a Lavawall® of protection

Secure Remote Management

Even if you used breached remote management tools like ScreenConnect through Lavawall® when it was vulnerable, your computers stayed safe because we only install the agent when it needs to be used.

Integrations and automation

Easily deploy, monitor, and analyze security tools like Huntress, AutoElevate, and Sophos. Magically gain details from ZenDesk, ConnectWise, Datto, Panorama9, Microsoft, and Google.

Human and automated support

Get immediate fixes, user notifications, admin notifications -- and even security-certified human level 3 support when our advanced statistical analysis confirms a problem or anomaly.

We are constantly improving the Lavawall® tools to add more value. Some of our most recent changes include:
2024‑09‑050.11.106.164Phased deployment enhancements
2024‑09‑040.11.103.161
2024‑09‑020.11.102.160CPU Optimizations and Packages reliability improvements
2024‑08‑300.11.99.157CPU Optimizations and Packages reliability improvements
2024‑08‑290.11.98.156CPU utilization and console event optimization
2024‑08‑280.11.97.155Reliability to detect unusual updates like redistributables.
2024‑08‑270.11.96.154
2024‑08‑260.11.95.153Faster response for reboot requests
2024‑08‑200.11.92.150Additional package upgrade pre-requisites
2024‑08‑150.11.89.147
2024‑08‑060.11.87.145
2024‑07‑260.11.83.141Add resiliency for MAC duplicates and uptime
2024‑07‑250.11.82.140Changes to facilitate cross-platform use. Bitlocker and Windows key refinements
2024‑07‑150.11.80.138Antivirus and temperature added to configuration checks
2024‑07‑150.11.79.137Add configuration checks for execution policy and secure boot
2024‑07‑110.11.77.135load balancing refinements
2024‑07‑100.11.76.134Add additional load balancing and data residency capabilities, add randomness to recurring task timings to decrease server load
2024‑07‑050.11.74.132changes to graph and residual work on user imporsonation
2024‑07‑040.11.73.131Add configuration checks for execution policy and secure boot.
2024‑07‑030.11.72.130Enhanced event log monitoring
2024‑07‑020.11.71.129Add details to Windows updates, enhanced risk metrics for application patches
2024‑06‑190.11.65.123Update resiliancy and garbage collection
2024‑06‑130.11.60.118Enhanced logging
2024‑06‑120.11.55.113Include the primary drive serial number; MAC addresses for built-in wireless, Bluetooth, and ethernet into the device hash to restore uninstalled and reinstalled devices in cases where the motherboard serial is not unique
2024‑06‑070.11.54.112Patch and package uninstall data addition
2024‑06‑050.11.47.105refine per-user registry application listing
2024‑06‑020.11.45.103uninstall and reinstall refinements, refine local logging, refine self-update and uninstall timing
2024‑05‑300.11.21.79various bug fixes and improvements
2024‑05‑280.11.16.74Error logging, registration, and uninstall improvements.
2024‑05‑240.11.14.72applied changes for devices and login commands, changes for registration as well
2024‑05‑220.11.13.71Add Windows computer model, improve Operating System parsing
2024‑05‑210.11.11.69Added additional states for Windows update, flexibility for non-standard program file configurations, support for network diagrams at the switch level, details for Windows editions
2024‑05‑210.11.10.68Add specific cases for Defender patterns and Composer versions.
2024‑05‑170.11.3.61Change Log storage location to c:\program files\Lavawall
2024‑05‑170.11.1.59self-update improvements.
2024‑05‑160.8.0.55 error log reporting and management.
2024‑05‑150.7.0.54Websocket resiliency improvements
2024‑05‑090.6.0.53 Error log reporting and management.
2024‑05‑010.5.44.52Even more improvements to scheduler
2024‑04‑240.5.41.49Install compatibility with Sandbox
2024‑04‑220.5.21.29Project property changes to enable automated compilation with new features.
2024‑04‑200.5.20.28Add motherboard serial number and company reassignment
2024‑04‑110.5.4.12Automate release notes as part of build process
2024‑04‑030.5.3.11Websocket and service enhancements
2024‑03‑210.5.2.10Enhance zip file validation
2024‑03‑200.5.1.9Self-update enhancements
2024‑03‑200.5.0.8Enhance installer capabilities
2024‑03‑080.4.2.7Add details to available updates
2024‑03‑080.4.1.6Add additional architecture and source information to application inventory
2024‑02‑220.4.0.5Change compilation approach. The executable signed with an EV code signing certificate includes the company information so it is no longer required as an argument.

Although the Linux agent code base is mature, dating back to 2006, we're still constantly improving it to add value and compatibility for new distributions. Some of our most recent changes include:
2024‑05‑20253Added cleanup of old .json files during a re-install
2024‑05‑13252Added apt-get update to install
2024‑05‑06248Allow restart to use /var/run/reboot-required if needrestart is not installed
2024‑04‑22239Improve internal update and version tracking
2024‑04‑15235Add support for Yum packages
2024‑04‑08233Align patching with Windows patch reporting
2024‑04‑02228Add support for needrestart
2024‑03‑04224Schedule restarts
2024‑03‑25221Add support for apt packages
2024‑03‑18212Implement release management
2024‑03‑11202Add user login monitoring
2024‑03‑04189Enhance installation reliability
2024‑02‑26187Exapand triggers to identify if the instance needs to be restarted
2024‑02‑19146Improve compatibility for non-AWS instances
2024‑02‑14138Add self-uninstall capabilities
2024‑02‑12135Enhance scheduling flexibility
2024‑02‑07132Add kernel version tracking
2024‑02‑05124Add device hash to cryptographic self-update script validation
2024‑01‑29107Enhance encryption of patch data
2024‑01‑2298Improve how available storage is calculated
2024‑01‑1597Move initial tasks from installation file to sub scripts
2024‑05‑2191Improve multi-distribution compatibility
2024‑05‑2179Improve encryption reliability
2023‑12‑1168Enhance cryptographic validation of new scripts before updating
2023‑11‑2062Add inner layer of AES encryption in case TLS inspection doesn't allow for a secure connection
2023‑11‑2756Additional base cases for resiliancy
2023‑11‑2054Additional headers added to authentication process during installation.
2023‑11‑2053Enhanced key management
2023‑11‑1551Add insecure installation parameter to allow installation in environments with TLS inspection or other machine-in-the-middle situations.
2023‑11‑0642Enhance redundant encryption during installation.
2023‑10‑3033Improve install-over compatibility
2023‑10‑2318Add reboot configuration and scheduling
2023‑10‑2317Add self-updating functionality.
2023‑10‑1615Add Linux patching information for apt
2023‑10‑0914Collect system information
2023‑10‑0913Add Linux distribution information
2023‑09‑3012Add memory monitoring
2023‑09‑3010Add hardware information
2023‑09‑239Add AWS information
2023‑09‑238Add customized schedule capability for configuration updates
2023‑09‑237Add support for package monitoring using package and dpkg logs
2023‑09‑166Add storage data configuration gathering
2023‑09‑165Add CPU information

Lavawall®'s data gathering approach started with Government and Fortune 50 information security audits. When our founder transitioned from audit and assurance work to a Managed IT Service Provider (MSP), he was shocked that basics like Multi-Factor Authentication were painful to implement in some RMMs like ConnectWise and it was impossible to turn off remote access services in others like Datto RMM and SuperOps.

Lavawall® was built from the ground up with these concerns and the Minimum Viable Secure Product requirements in mind.

Some of the controls we implemented include:
  • PassKeys as the preferred primary authentication at no additional cost
  • Single Sign-on using modern, maintained, and industry-standard protocols for all customers at no additional cost
  • Multi-Factor Authentication as a non-negotiable default
  • Encrypting communications the same way as TLS again within the TLS tunnel, so we can allow TLS inspection without breaking like Huntress or disclosing security vulnerabilities to eavesdroppers.
  • Encouraging external vulnerability reports and customer testing
  • Passwords checked against popular disclosed passwords, hashed before they leave your computer, and then stored using Argon2id
  • Not requiring the use of passwords at all. We consider them a temporary backup authentication in case you can't use passkeys or SSO.

Lavawall® scanning computers are on dedicated servers in Calgary, Alberta, Canada.
Lavawall® databases and front-end systems are hosted with AWS in Montréal, Québec, Canada.
We send emails through AWS in Ireland and dedicated servers in Calgary, Alberta, Canada.
We send text messages for additional identity verification through Twilio in the United States.
We store executables and pass requests through Cloudflare at your nearest edge location.
We use Cloudflare for risk management, turnstile, and web application firewall services.
We use LeadPages for landing pages.
We use Google and Facebook for analytics on our public-facing pages, but they do not have access to the console.
We integrate with third-party tools, such as Microsoft, Google, Huntress, Screen Connect, Axcient, and Datto in their respective locations. However, you must initiate these integrations through single sign-on or by enabling them in your Lavawall® console.

Active security by design

Lavawall® is under active development with the latest release on

5+

Interfaces

150+

Monitored Applications

7+

System Metrics

Actively manage your IT with Lavawall®

Patching

Updates Beyond Windows

Lavawall® prevents the 80% of breaches and failed audits due to missing patches and updates.
You can reduce application patching delays from 67 days to nearly immediate with the 150+ applications that Lavawall® monitors and patches.

Patch release monitoring
Monitor everything without having to select packages or “managed applications”
Patch impact classification
Standard and optional Windows patches
Lavawall patch grid
Logos, products, trade names, and company names are all the property of their respective trademark holders.
The above listing includes products that Lavawall® monitors through public information and/or proprietary statistical analysis.
Although we do have a partner relationship with some of the listed products and companies, they do not necessarily endorse Lavawall® or have integrations with our systems.


Learn More
Flexible Term; Flexible Service

Flexibility for your dynamic business

You need to get your arms around compliance and security and don't want to get locked into “high watermark” monthly invoices or multi-year contracts.

Pay-as-you-need monthly pricing

DIY, full management, and coaching options

CMMI, PCI, SOC2, Canadian Cybersecurity, Minimum Viable Secure Product, and other compliance support

Choose the plan that's right for you

Simple pricing. No hidden fees. Advanced features for you business.

Month
Annual

Get 2 months free with Annual!
DIY

Security-focused RMM

C$3.25 /computer/Month

C$32.50 /computer/Year

  • 1 computer
    or 1 of the following cloud integrations:
    AWS, Axcient, Connectwise, Datto, Google, Huntress, M365, Sophos Central integrations
    (each integration counts as 1 computer)
  • 150+ application patches
  • 30-day Logs
  • Security configuration monitoring
  • Anomaly detection
  • CMMI, MVSP, CyberCanda compliance
  • Lavawall® support
  • Sophos MDR: C$13.50/desktop
    Sophos MDR: C$162/desktop
  • Huntress: C$5.40/device
    Huntress: C$64.80/device
  • Available white-label support for end users
  • Level 3+ IT support for IT
  • Weekly IT coaching sessions
Popular
Managed Security & Support

Unlimited end-user support

C$160 /user/Month

C$1,600 /user/Year

  • 1 computer/user
    Additional devices charged at DIY prices
  • AWS, Axcient, Connectwise, Datto, Google, Huntress, M365, Sophos Central integrations
  • 150+ application patches
  • 90-day Logs
  • Security configuration monitoring
  • Anomaly detection
  • CMMI, MVSP, CyberCanda compliance
  • Lavawall® support
  • Sophos MDR Essentials
  • Huntress
  • White-label email and phone support for end users
  • Level 3+ IT support for IT
  • Weekly IT coaching sessions
  • Automatic discount and upgrade to Support & Coaching after 15 users
Support & Coaching

Improve your IT performance

$2,250 /Month

$22,500 /Year

  • 25 computers included
    Additional computers charged at DIY prices
  • AWS, Axcient, Connectwise, Datto, Google, Huntress, M365, Sophos Central integrations
  • 150+ application patches
  • 90-day Logs
  • Security configuration monitoring
  • Anomaly detection
  • CMMI, MVSP, CyberCanda compliance
  • Lavawall®-only support
  • Sophos MDR Essentials
  • Huntress
  • White-label email and phone support for 15 users included Additional: C$150/user Additional: C$1,500/user
  • L3 IT support for IT
  • Weekly IT coaching sessions

Frequently Asked Questions

If you can not find answer to your question in our FAQ, you can always contact us or email us. We will answer you shortly!

General Questions

The three big catalysts for Lavawall® were:
  1. Two years after a missing Plex Media Server led to the LastPass breach, the Remote Monitorign and Management (RMM) tools availabel for Manged IT Service Providers (MSPs) still didn't monitor for it.
    Going through industry-specific applications, we noticed many were missing from the big RMM and patching providers. MSPs, insurance providers, and organizations that put their cleints at risk need to know about these risks, which lead to the largest number of critical audit findings and breaches
  2. After 20 years of writing the same audit findings about system configurations, Payment Card Industry (PCI) compliance, and missing patches, our technical co-founder wanted to make it easier fo avoid these findings
  3. The existing risk visibility tools for insurance underwriters took a shallow look at Internet-facing risks. They -- along with all businesses -- need a deeper view of the threats that could actually lead to breaches.

Lavawall® breaks vulnerabilities into the following groups:
  • Domain risks
  • Operating System (OS) patches
  • Application patches
  • Network vulnerabilities
  • Cloud vulnerabilities
  • OS configurations

We are currently building more third-party interfaces. Current interfaces include:
  • Axcient*
  • Cloudflare
  • Connectwise Screen Connect
  • Datto RMM
  • FreshDesk*
  • Huntress
  • Microsoft 365
  • Panorama9
  • ZenDesk
*In limited release/development

Yes!
You can use your own logo for the console and notifications. You can also use a CNAME to automatically brand your console.
Note: you cannot currently re-proxy the CNAME to Lavawall® through Cloudflare.
Privacy & Security

We encourage primary authentication for Lavawall® through Passkeys or Single Sign On (SSO).
However, we do allow passwords and use passwords as part of the zero-knowledge encryption for your clients' sensitive data, such as Bitlocker keys and Personally-Identifiable Information (PII).
These passwords use Argon2id slow hashes with individual salts and peppers.

Yes! Lavawall communicates with its endpoints through TLS. However, given that many of our clients want to be as secure as possible and have TLS inspection enabled, we allow for "insecure" connections with invalid certificates, which result from such configurations.
We have added an additional secure tunnel that mimics the TLS process within the public TLS tunnel. This extra tunnel provides authentication and privacy for the workstations and the Lavawall® servers to prevent attacks such as the one that took down Solar Winds.

We do not enable remote access tools like ScreenConnect unless you authorize them and are logged in. Lavawall® was not vulnerable to the ScreenConnect vulnerability because we install and uninstall it right before it's used. In addition, we give the option of linking to Access.

Remote access is not enabled for read-only and audit situations.

Lavawall®'s designer holds a CISSP and CISA. In addition, we have external and internal security reviews.

Get In Touch

Have a quick question and don't want to talk? Send us a quick note with the form below and we'll reply within one business day.

NW Calgary:
(By Appointment Only)
ThreeShield Information Security Corporation
600 Crowfoot Crescent N.W., Suite 340
Calgary, Alberta
T3G 0B4
SE Calgary:
(By Appointment Only)
ThreeShield Information Security Corporation
105, 11500 - 29th St. SE
Calgary, Alberta
T2Z 3W9
Canada
Sales Hours:
9:00am to 5:00pm Mountain Time
Support Hours:
7:00am to 7:00pm Mountain Time
On-Call Support Hours:
24/7

Monitor the real security risks with Lavawall®